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Macroscopic Properties

Studies of the dielectric function €(K, w) by optical spectroscopy are very
useful in the determination of the overall band structure of a crystal, and
optical spectroscopy has developed into the most important experimental
tool for band structure determination. In the infrared, visible, and ultraviolet
spectral regions the wavevector of the radiation is very small (K=0) compared
with the shortest reciprocal lattice vector, and therefore it may usually be
taken as zero. We are concerned then with the real €’ and imaginary parts €”
of the dielectric function at zero wavevector; €(w) = €’(w) + ie”(w). However,
the directly accessible functions from optical measurements are the
reflectance R(w), the refractive index n(w), and the extinction coefficient K(w).
Our first objective is to relate the experimentally observable quantities to the
real and imaginary parts of the dielectric function. The reflectivity coefficient
r(w) is a complex function defined at the crystal surface as the ratio of the
reflected electric field E(refl) to the incident electric field E(inc):

E(refl)/E(inc) = r(w) = p(w) explif(w)]

Here, p(w) and O(w) are the amplitude and phase components of the
reflectivity coefficient, respectively.



At normal incidence, the reflectivity r and reflectance R in the crystal can be
expressed as

n+iK+1
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(n + 172+ K? p

and

By definition, n(w) and K(w) are related to the dielectric function e(w) by

Velw) =nlw) + iKlw) = N(w) , Where N(w) is the complex refractive index.

€(w)=n*>— K ; €"(w) = 2nK

The transmitted wave in the medium is attenuated because, by the
dispersion relation for electromagnetic waves, the wavevector in the
medium is related to the incident wavevector k in vacuum by (n + iK)k:

Ey(trans) o< exp {[i[(n + iK)kx — wt]} = exp(—Kkx) expli(nkx — wt)]

From the experimental we can measure the intensity of the reflected wave,
which is termed the reflectance R(w) = r*(w)r(w). We also need to know the
phase 6(w) of the reflected wave in order to obtain n(w) and K(w), but It is
difficult to measure 6(w). We show below that it can be calculated from the
measured reflectance R(w) if this is known at all frequencies.



Kramers-Kronig Relations

The Kramers—Kronig relations are bidirectional mathematical relations,
connecting the real and imaginary parts of any complex function that
is analytic in the upper half-plane. The relations are often used to compute
the real part from the imaginary part (or vice versa) of response
functions in physical systems. The response of any linear passive system can
be represented as the superposition of the responses of a collection of j
damped harmonic oscillators with masses M,. Let the response function a(w)
= a’(w) + ia”(w) of the collection of oscillators be defined by

X, = a(w)F, e, F isthe applied force and x_ the displacement.

From the equation of motion, M(d*/dt* + p,d/dt + w})x; = F
f; a)j2 — w* + iwp,
Then a(w) = 2 5 ; = Ef] 5 2

] W~ o~ iop, (0] — 0”)" + wp;

(a) The poles of a(w) are all below the real axis.

(b) The integral of a(w)/w vanishes when taken around an infinite semicircle
in the upper half of the complex w-plane. It suffices that a(w)[0
uniformly as |w|[lee.

(c) The function a’(w) is even and a”(w) is odd with respect to real w.




Consider the Cauchy integral in the form

oo

a(w) = 77% P Sa_<820

ds

where P denotes the principal part of the integral and the right-hand side is
to integrate over the semicircle at infinity in the upper half-plane. We
equate the real parts of the equation to obtain

_—PJ = P[fooog:(i))ds—l-Jom;”_(p(z)dp]

Substitute p for —s and use property (c) that a”(-s) = - a”(s), then
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The segments (1) and (3) are by definition the
principal part of the integral between —oo and oo,
Because the integral over (1) + (2) + (3) + (4) must
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We have the Kramers-Kronig relations:

sa(s) 2w [* a'ls)
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We can apply the Kramers-Kronig relations to r(w) viewed as a response
function between the incident and reflected waves.

E(refl)/E(inc) = r(w) = p(w) explif(w)] = RY/2exp[if(w)]
m Inr(w)=InR"*w)+i0(w)

We apply the second Kramers-Kronig relations, then

blw) = —2p [ IR oL J In
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Spectral regions in which the reflectance is constant do not contribute to
the integral; further, spectral regions s >> w and s << w do not contribute
much because the function In |(s + w)/(s — w)| is small in these regions.
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There are several processes involved

in absorption, but the main five are:

1.

2.

Absorption due to electronic
transitions between bands that
involve wavelengths typically less
than ten micrometers;

Absorption by excitons at wave-
lengths with energies just below
the absorption edge due to
valence conduction band
transitions;

. Excitation and ionization of impurities that involve wavelengths ranging from

about one micrometer to one thousand micrometers;

Excitation of lattice vibrations (optical phonons) in polar solids for which the

usual wavelengths are ten to fifty micrometers;

particularly important in metals.

. Free-carrier absorption for frequencies up to the plasma edge, which is



Fermi Golden Rule

The Fermi golden rule can be used for calculating the transition probability
rate for an electron that is excited by a photon from the valence band to
the conduction band in a direct band-gap semiconductor. Consider an EM
wave of frequency w and wavevector q, its electric field is

E = —0A /8t = iwAgee’@r«1), Alis the vector potential of the EM wave.

For a charged particle in the valence band, the Hamiltonian is
(p— QA)?
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where H’ is the perturbation of the EM wave. From here on we have
transition probability based on time-dependent perturbation theory that

A
i = 2 |(fIH i) P6(By — B + hw)  and  H ~ 2%¢.5
h Mo
BA[] 9 1h .
Lo = ? ( mo ) |"f u’cv( )‘ 5(EC - B, - ﬁw) Hrev = _Q_(] Qo dr!unc,k (r’)VunU,k(I")

U, is the transition dipole moment matrix element with the expectation
value of (c|(charge) x (distance)|v) .



Electronic Interband Transitions

Direct interband absorption of a photon Aw will occur at all points in the
Brillouin zone for which energy is conserved: #w = €,(k) — €,(k) . The total
absorption at given w is an integral over all transitions in the zone that satisfy
the energy conservation and usually is broad and featureless. However, the
energy-conservation relation does not exclude spectral structure in a crystal,
because transitions accumulate at frequencies for which the bands ¢, v are
parallel — that is, at frequencies where Vile(k) —€,(k)] =0 . At these critical
points in k space the joint density of states D(e,+hw)D,(€,) is singular.

The broad bands convey much intelligence @
which emerges when derivatives are taken of
the reflectance derivatives with respect to
wavelength, electric field, temperature,
pressure, or uniaxial stress. The spectroscopy
of derivatives is called modulation /3-0 2 o 2
spectroscopy. One example is shown in the
right figure the spectral region in germanium y
between 3.0 and 3.6 eV. U \} e
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Mott-Wannier Excitons

Consider an electron in the conduction band and a hole in the valence band.
The pair is weakly bound and attracts each other by the coulomb potential

Ulr) = —e*/er , Where ris the distance between the particles and
€ is the appropriate dielectric constant.

Photon energy in eV

e —2 = This is similar to the hydrogen atom

I I I
Cu0, n=4 problem and the energy levels referred to

8- Egv217eV the top of the valence band are given by
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Here n is the principal quantum number
and u is the reduced mass:
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Excitons

Reflectance and absorption spectra often show structure for photon
energies just below the energy gap, where we might expect the crystal to be
transparent. This structure is caused by the absorption of a photon with the
creation of a bound electron-hole pair.

The lowest frequency absorption line of the crystal at absolute zero is not £,
but is £, - E,,. E, is the binding energy of the exciton. An exciton can have
translational kinetic energy. Excitons are unstable with respect to radiative
recombination in which the electron drops into the hole in the valence band,
accompanied by the emission of a photon or phonons.



Frenkel Excitons

In a tightly bound exciton, the excitation is localized on or near a single atom:
the hole is usually on the same atom as the electron although the pair may
be anywhere in the crystal. A Frenkel exciton is essentially an excited state of
a single atom, but the excitation can hop from one atom to another by virtue

of the coupling between neighbors. | |
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Atomic krypton has its lowest strong atomic transition at 9.99 eV. The
corresponding transition in the crystal is equal to 10.17 eV. The energy gap in
the crystal is 11.7 eV, so the exciton ground state energy is 11.7 - 10.17 =~ 1.5
eV, referred to a free electron and free hole separated in the crystal.



Intraband Transition

Free-carrier absorption can be viewed as intraband absorption — the
electron absorbing the photon remains in the same band. Free-carrier
absorption is obviously important for metals, and is often of importance for
semiconductors. Free electronic systems can be treated classically when
their de Broglie wavelengths are small compared to the average
interparticle separations. For many purposes, the process can be viewed
classically by Drude theory with a relaxation time of 1= 1/w,,.

Assuming a sinusoidal electric field E = Ejexp(-iwt) and using an effective

mass m* rather thanm: ~ «. m . _ —eE, exp(-ior)
T

Seeking a steady-state solution of the form x = x,exp(-iwt), we find
X = (eE/m*)(w? + iw/1) 1= (eE/m™*)(w? + iww,) ™
The polarization P due to the free carriers with density N is
P = -Nex = x,E = —=(Ne?E/m*)(w? + iww,) ™ = - w,? (w? + iww,) E
Here w,” = Ne?/m* , and w, is the plasma frequency.
€(w) = 1+ y(w)=1- w,? (W + iwwy)™



The complex dielectric constant €, is related to the refraction index n, and
its real part €'(w) as well as imaginary part €”(w) are

€'(w)= nN-K=1-w,? (w?+wy)™
€”(w) = 2nK = w,* (wy/w)(w? + wy?)™

The plasma frequency w), is proportional to the free-carrier concentration,
w, measures the electron—phonon coupling and w is the frequency of light.

(i) Low frequency region: w << w, or w/w, << 1. We obtain
€'(w)=n"-K=1-w?/w?; €(w)= 2nK = (wy/w) >>1

Here the imaginary part (of the dielectric constant) is much greater than

_ 2 2
the real part and we have high reflection because p = (n— 1"+ K°
(n +1)* + K>

(i) Relaxation region: w, << w << w,. We obtain
€'(lw)=n"-K=1-w?/w*; €(w)=2nK = (w,/w) (wy/w) < €(w)

From these two relations, the imaginary part of the refractive index K is
much greater than its real part n, so the metal is still strongly reflecting.



(iii) Ultraviolet region: w >> w),, or w/w,>> 1. We obtain

€(w)=n"-K=1; €' (w)=2nK = (w,/w)? << €'(w)
The imaginary part of the refractive index K is much smaller than its real
part n, and there is little reflectance since this is the ultraviolet
transparency region.

l=a+R+T
Absorption and reflection of metals
A o =2nnin/c 1-R
1.0
J—
x

In(1/7) . In(op) In(w)
Hagen—Rubens Relaxation uv




Plasmons

A plasmon is a quantum of plasma oscillation. The plasmon can be considered as
a quasiparticle since it arises from the quantization of plasma oscillations, just
like phonons are quantizations of mechanical vibrations. Thus, plasmons are
collective (a discrete number) oscillations of the free electron gas density. For
example, at optical frequencies, plasmons can couple with a photon to create
another quasiparticle called a plasmon polariton. For a free-electron in an electric
field E we have, then

d?x | _ eE
m—-= —eE | |f both x and E o« eXp(—1ax) == X = 2"
dt ma

2 2
Ne
P=-Nex=———E, apnd &w)=1+ Plo) _,__Ne -
ma &oE(w) Egma
2 >
@ Ne
e@=1-—5 and w;= - Plasmon frequency
@ Egm

If the positive ion core background has a dielectric constant of g(ee) that is about
constant, then 2 . o,
g(w)=¢g(o)1-—L|, where @, =

e P Je(eo)




Polaritons

Polaritons are quasiparticles resulting from strong coupling
of electromagnetic waves with an electric or magnetic dipole-carrying
excitation. The polariton is a bosonic quasiparticle, which has a major
feature of a strong dependency of the propagation speed of light through
the crystal on the frequency of the photon.

A polariton is the result of the combination of a photon with a polar

excitation in a material. The following are types of polaritons:

* Phonon polaritons result from coupling of an infrared photon with an
optical phonon;

* Exciton polaritons result from coupling of visible light with an exciton;

* Intersubband polaritons result from coupling of an infrared or terahertz
photon with an intersubband excitation;

 Surface plasmon polaritons result from coupling of surface
plasmons with light.



wr

Phonon Polaritons

Polar solids carry lattice polarization waves and hence can interact with
electromagnetic waves, but by selection rules and conservation laws, only
transverse optical phonons couple to electromagnetic waves. The
dispersion relations for photons and the phonons of the polarization waves
can cross. When these dispersion relations cross, the resulting quanta turn
out to be neither photons nor phonons but mixtures called polaritons.

Frequency For n = e2with 0 = 0, if € < 0, one gets

high reflectivity with n pure imaginary.

Since 0 -0
e(w) = (=) ———
oL wr —w

If
2 2 2, €&
Wr <w <wr+——-, then £<0.

£(c)

Phonon-like modes A band of forbidden non-propagating

Photon-like modes

Phonon-like modes

Restrahlen band (forbidden)

Photon-like modes EM waves extends from w; to w,. w; is
Wave vector called the Restrahl frequency.




Exciton Polaritons

Exciton polariton is a type of polariton, a hybrid light and matter quasiparticle
arising from the strong coupling of the electromagnetic dipolar oscillations
of excitons and photons. The coupling of the two oscillators, photons modes
in the semiconductor optical microcavity and excitons of the quantum wells,
results in the energy anti-crossing of the bare oscillators, giving rise to the two
new normal modes for the system, known as the upper and lower polariton
resonances (or branches). The energy shift is proportional to the coupling
strength.

Material Hybrid states . The higher energy or upper mode
resonance © UP " resonance (UPB, upper polariton branch) is
characterized by the photonic and
g exciton fields oscillating in-phase,

ho,, LP hw,,

ex

while the LPB (lower polariton
branch) mode is characterized by
them oscillating with phase-
T — ~ |0) — — opposition.

Energy




Surface Plasma Polaritons

Surface plasmons are those plasmons that are confined to surfaces and that
interact strongly with light resulting in a polariton. They occur at the interface of
a material exhibiting positive real part of their relative permittivity, i.e. dielectric
constant, (e.g. vacuum, air, glass and other dielectrics) and a material whose
real part of permittivity is negative at the given frequency of light, typically a
metal or heavily doped semiconductors. In addition to opposite sign of the real
part of the permittivity, the magnitude of the real part of the permittivity in the
negative permittivity region should typically be larger than the magnitude of the
permittivity in the positive permittivity region, otherwise the light is not bound
to the surface. With the light of 632.8 nm wavelength provided by a He-Ne laser,
interfaces supporting surface plasmons are often formed by metals like silver or
gold (negative real part permittivity) in contact with dielectrics such as air or
silicon dioxide. Many geometric structures have been explored due to the
capability of surface plasmons to confine light below the diffraction limit of light.
SPPs can be used to channel light efficiently into nanometer scale volumes,
leading to direct modification of resonate frequency dispersion properties, as

well as field enhancements suitable for enabling strong interactions
with nonlinear materials.



Nonlinear Optical Process

Nonlinear optics is related to the analysis of the nonlinear interaction between
light and matter when the light-induced changes of the medium optical
properties occur. The nonlinear optical effects are weak, and typically observed
only at very high light intensities (values of atomic electric fields, typically
108 V/m) such as those provided by lasers. A typical nonlinear optical process
consists of two stages. First, the intense coherent light induces a nonlinear
response of the medium, and then the modified medium influences the optical
radiation in a nonlinear way. The nonlinear medium is described by a system of
the dynamic equations including the optical field. If the optical fields are not too
large, can be described by a Taylor series expansion of the dielectric polarization
density P(t) at time t in terms of the electric field E(t):

P(t) = e (XVE() + xE* () + xVEN®) + ..,

where the coefficients x are the n-th-order susceptibilities of the medium, and
the presence of such a term is generally referred to as an n-th-order
nonlinearity. In general, x” is an (n + 1)-th-rank tensor representing both
the polarization dependent nature of the interaction and the symmetries of the
nonlinear material.



Wave Equation in a Nonlinear Material

Central to the study of electromagnetic waves is the wave equation.
Starting with Maxwell's equations in an isotropic space, containing no free
charge, it can be shown that

n? 6° 1 0? n? 02 1 02
VXVXE+——E=—-——-—P" or VZE- ——E-= — PN
c2 Ot? gpc? Ot2 c? Ot? ggc? Ot2
where PN is the nonlinear part of the polarization density, and n is

the refractive index, which comes from the linear term in P.

In general, an n-th order nonlinearity will lead to (n + 1)-wave mixing. As
an example, if we consider only a second-order nonlinearity (three-wave
mixing), then the polarization P takes the form PN = ¢(xP E?(¢).

If E(t) is made up of two components at frequencies w, and w,, then

1 : 1 ,
E(t) = EEle_W-’lt + §E26_1w2t + c.Cc.,

PNL - E;TOX(Z} [Elzeizwlt + E2267’£2w2i 4 2E1E2672'(w1+w2)t n zElEQ*ef’i(wlfﬁU:z}i + (E1|2 + |E22) 80 +C-C-J .

which has frequency components at 2w,, 2w,, w,+w,, w,-w,, and 0, corres-
ponding to the nonlinear effects known as second harmonics, sum and
difference frequency generations and optical rectification, respectively.



Phase Matching

In a typical situation, the electrical fields are traveling waves described by
Ej(x,t) = B ") 4 c.c.

at position x, with the wave vector |k;|| = n(w;)w;/c, , where c is the velocity

of light in vacuum, and n(w)) is the index of refraction of the medium at

angular frequency w;. Thus, the second-order polarization at angular

frequency w3 = Wy + Wy is p) (x,t) < EM E gillki ko) x—wst] | o

At each position x within the medium, the oscillating second-order

polarization radiates at angular frequency w; and a corresponding wave

vector |/ks|l =n(ws)ws/c. Constructive interference, and therefore a high-

intensity w; field, will occur only if E3 _ E1 n Ez-

The above equation is known as the phase-matching condition. Typically,
three-wave mixing is done in a birefringent crystalline material, where
the refractive index depends on the polarization and direction of the light
that passes through. The polarizations of the fields and the orientation of
the crystal are chosen such that the phase-matching condition is fulfilled.
This technique is called angle tuning.



Frequency Doubling

One of the most commonly used frequency-mixing processes is frequency
doubling, or second-harmonic generation. Practically, frequency doubling is
carried out by placing a nonlinear medium in a laser beam. While there are
many types of nonlinear media, the most common media are crystals. These
crystals have the necessary properties of being strongly birefringent, having a
specific crystal symmetry, being transparent for both the impinging laser light
and the frequency-doubled wavelength, and having high damage thresholds,

which makes them resistant against the high-intensity laser light.
Common second-harmonic-generating (SHG) materials with fundamental excitation at :

800 nm: barium borate (BBO)

806 nm: lithium iodate (LilO;)

860 nm: potassium niobate (KNbO;)

980 nm: KNbO,

1064 nm: monopotassium phosphate (KDP), lithium triborate (LBO) and -BBO
1300 nm: gallium selenide (GaSe)

1319 nm: KNbO;, BBO, KDP, potassium titanyl phosphate (KTP), lithium

niobate (LiNbO;), LilO5;, and ammonium dihydrogen phosphate (ADP)

1550 nm: potassium titanyl phosphate (KTP), lithium niobate (LiNbO;)



Problems

1. Hagen-Rubens relation for infrared reflectivity of metals. The
complex refractive index n + iK of a metal for wt << 1 is given by

e(w) = (n +iK)* =1+ 4mioy/w |

where g, is the conductivity for static fields. We assume here that
intraband currents are dominant; interband transitions are neglected.
For the reflection coefficient at normal incidence, show that

R=1—Qw/mo,)"* ,

provided that o, >> w. This is the Hagen-Rubens relation. For sodium
at room temperature, g,=~ 2.1 x 10 s7in CGS and 7 = 3.1 x 1075,
as deduced from 7 = g, m/ne?. Radiation of 10 um has w = 1.88 x 104
s!, so that the Hagen-Rubens result should apply: R = 0.976. The
result calculated from experimental values of n and K'is 0.987. Hint: If
0, >> w, then n? = K? . This simplifies the algebra.



2. For intermediate frequencies w;< w < w,, given

£(@)  &() _ 3Bjon (@)
£ g9 [1=Bg = Bion (@)](1-Bg)

and the equation of motion

2
,u\'/°+Gv=—1 Ne v+eE
350 I_Bel
derive the equation
2, €&
wr + =wy ,
E(e°)

where c is a defined as constant within the derivation. In this process,
show intermediate derivations for the following equations defining

constants as necessary: o) 2
U(wr —w° ) =ek,

E 1
E,. 1+F’

£(w) = &(e0) +
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